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Abstract

The problem of estimating a weighted average of a random process from
noisy observations at a finite number of sampling points is considered. The
performance of sampling designs with optimal or suboptimal, but easily
computable, estimator coefficients is studied. Several examples and special

cases are studied including additive independent noise, nonlinear distortion

with noise, and quantization noise.
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I. INTRODUCTION

The problem of estimating a weighted integral of a random process from

1 observations of the process at a finite number of sampling points has been
studied by several authors (see the survey [2]). It is an important problem
of interest in several areas of communications, information theory, statistics,

and signal processing. The usual questions of interest are to find the optimal

T v Fr = w

sampling design of size n, or sampling designs which are asymptotically optimal
as the sample size tends to infinity. Coupled with these is the problem of
estimator design and the study of how the mean square estimation error tends

to zero as the sampie size tend to infinity.

In this paper we consider these problems for the case where the observa-
tions are corrupted by noise. We allow the noise to be possibly dependent
upon the random process whose integral we are trying to estimate, henceforth
called the signal process. In this case as the number of sampling points
- increases to infinity the mean square approximation error no longer tends to
zero but instead to some positive least possible value. We consider estimators
which use optimal coefficients as well as suboptimal (but simple) coefficients.
As far as the authors are aware, the only case of noisy observations
considered in the literature is in [5,6], where the observation noise is

assumed white and the signal Gauss-Markov. The optimal sampling designs are

determined in [5] and the rates of convergence of the mean square estimation
error are found in [6] to be 1/n with noise and 1/n2 with no noise.

One of the main contributions of this paper is to show that these mean
square estimation errors and their rate of convergence to least possible
values depend crucially on the solution of a certain diener-Heof intearil enua-

tion. If the solution to the integral ecuation is smooth and contains at most

STERSSSYIYI NS S PSS T LT

R R |
o
W

.............................



Dirac delta functions, but not derivatives of delta functions, then
asymptotically optimal sampling designs can be chosen for both kinds of
estimators. Otherwise the rate of convergence of the optimal coefficient
estimator is not known. Fortunately the rate of convergence of simple -
coefficient estimators can still be found even in this case, but their
asymptotic mean square estimation error is not the least possible, even though
it can be made arbitrarily close.

In Section II we develop the general set up and solution to the problem.
In Section III we consider in more detail the cases of additive observation
noise, of nonlinear signal distortion plus additive noise, and of quantization
noise. In particular we see that while additive noise of comparable smoothness
with the signal does not affect the rates of convergence (but does affect the

asymptotic constants), quantization noise also reduces the convergence rate.

Throughout the paper we consider in detail the case of random processes

with no quadratic mean derivative, both for simplicity of exposition and be-

P it et 4

; cause several questions remain still unresolved when quadratic derivatives of

order two and higher exist (the case of only one quadratic mean derivative be-

P

ing similar to that of no quadratic mean derivative).

In this paper we consider only two kinds of (nonrandom) sampling design.
They generalize periodic sampling which includes the endpoints a and b, and per-
iodic sampling which does not include the endpoints but is symmetrically spaced
in the observation interval. Choose a continuous, positive probability density

h on the interval [a,b]. Regular sampling chooses for each n as the n sampling

points T = {tn1""’ t o} all (n- 1)'] percentiles of h:
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and we refer to {Tn} as a sequence of regular sampling designs generated by the

density h. Median sampling chooses for each n as the n sampling points Tn =

{tnl""’tnn} the medians of a regular sequence of designs:

“nk 2k-1
[ h(t) dt = Tn- s k=1 ,2,...,",
a

and we refer to {Tn}as a sequence of median samnling desins qenerated by the

density h. ilhen h is the uniform density, both rejular and median sampling be-

come periodic, the former including the interval endnoints while the latter does not.

We will use the following notation in order to simplify the text. With
T = (t],...,tn) an n-point subset of [a,b] and with functions f(t) defined on

[a,b] and R(s,t) defined on [a,b]x[a,b], we will write f% for the n-vector

. n
(f(t]),...,f(tn)) and RT for the nxn matrix {R(ti’tj)}i,j=l' We also frequently

delete the range of integration as well as the argument, writing e.g. S/Rff

for fygn(s,t)f(;)f(t)ds dt.
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IT. GENERAL CASE

We consider the problem of estimating the weighted integral of a random ‘
process X = {X(t), a <t < b}):
b
I - J X(t) f(t)dt
a
from "noisy" observations of the random process Y = {Y(t), a < t < b} at n sample
points T = {tk}2=1- The processes X and Y are assumed to have continuous
correlation functions Ry(s,t) and Ry(s,t) and cross correlation function RYX(s,t),
and the weighting function f is assumed to be continuous. We restrict attention
to linear estimates with weights Cr = (CT,l""’cT,n):
n
I =k§] crY{y) = cp ¥y

whose mean square approximation error is

2 _ 2 _ 2 . .
er = E(I-IT) = g° - 2chT + CTRY,TCT (1)
where
of = E12 = fr RyFf
b
s(t) = J Rx(t,u) f(u) du, (s = Rxf),
a
b
a(t) = | Ryyltau) ) . (g = Ry, F). (2)

If the observation process Y could be observed over the entire interval
(a,b] then the minimum mean square approximation error gi would be achieved

by the projection I of I onto the linear span of Y, which is determined by

ELT Y(t)] = E[I Y(t)]
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for all a < t < b, or equivalently by
g(t) = (RYXf) (t) = E[T Y(t)].

It follows that g belongs to the reproducing kernel Hilbert space (RKHS) R(RY)
of Y and

2 _ 2 2
e. = EI° - EI° = o°-||q]]| . (3)
R(Ry)

Of course when noiseless observations are available, i.e. when Y(t) = X(t),

then g = s and si = 0. In the general case we always have 62 2 0.

[o o]

Our goal is to choose the sampling points T and the estimator weights Cr
in such a way that the resulting mean square estimation error e% should be as

close to si as possible.

Optimal Coefficients

For a fixed sample T, the optimal coefficients ¢, are those which minimize
the mean square approximation error e% of (1), or equivalently those which make

c'TYT the projection of I onto the linear span of YT‘ They are given by

[} 1 '] N N . . .
¢ * QT RY,T » and thus the ontimal estimator and its mean square aporoximaticn

errcr are

T - o p-]

2 2 v =1 _ 2 2
o =97 RY,T 9r 70 - 'IPTQII R(RY) s

"

where PTg is the projection of g to the subspace of R(RY) generated by
{RY(',t), teT}.
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The optimal sampling design of size n (if it exists) thus maximizes

e over all sampling designs A of size n: T = {a < t; < tyc...<t - b}

IF
TIHR(R) ) n -
The performance of the optimal designs tends to e¢_ as the sample size tends to
infinitv, since

. 2 2 2 2 2 _ 2
inf €3 =0 - sup ||Pyg]] > g -]]gl] =€ .
T Toa - TUR(Ry) ¢ R(Ry)

Optimal sampling designs may not exist, and even when they exist it may be
difficult to determine them.
We now consider reqular sequences {Tn} of sampling designs Tn generated

by a density h, and write 1 and ¢ for I

As the sampling size n
r,n r,n T

and e, .
n Tn
increases they satisfy

2 ; (12 2 2
£p n= 0 = [{P19]] =€+ [lg - Pgl|
r,n Tn R(RY) Tn R(RY) n

Precise rates of convergence follow from the work of Sacks and Ylvisaker {9,10,11]
in certain cases where the observation process Y has exactly k quadratic mean
derivatives, under the additional assumption that the function g of (2), which

is in the RKHS of RY’ actually belongs to the smaller space r(RY), the range of

the integral type operator with kernel RY’ i.e.

b
o(t) = | Ry(tu)e(u) a, (g = Ry2), (5)

with & a continuous function. Specifically, under certain reqularity conditions,

(b oy (t)¢2(t)
ind Ck | T— dt, (6)

2k+2, 2 2
n (e -em)
n n 'a h (t)

T

where SV is the jump along the diagonal of the derivative of the (k,k) partial
derivative of RY’ oy k( ) = R$ kH(t,t- 0) - Rt’k+](t,t-+0) >0 (superscripts denoting
partial derivatives). The regularity conditions are specified e.g. in [11] and

need not be repeated here; it should be noted, however, that for k -2 this result
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has not yet been established for as broad a class of covariances R, as when k =0,]

L4

Y
) (cf. Section 6.1 in [2]). By choosing the density h*(t) which minimizes the right

1)

hand side of (6), i.e. proportional to [aY k(t)¢2(t)]1/(2k+°), we obtain a regular N
, s _ N
sequence {T;} of sampling designs which is asymptotically optimal, i.e. satisfies N
"
-
2 RX
A r*,n .
y <____7?___ > ] s X
: inf 1 n
T»’,An
. and -
: 2k+2, 2 b 3 -
: k+ 2 2 k+ 2k+3 .
: N G AN LI O R :
) The regularity conditions are satisfied by stationary processes with rational ;‘
spectral densities, the stationary process with triangular covariance, the o
Wiener process, etc., and in all these cases the jumps ak(t) of the covariance
«
derivative are constant. The value of the constant is Ck= 182k+2|/(2k-+2)! 2
~
-~
where Bm is the mth Bernoulli coefficient, and CO= 1/12, C]= 1/720 (see the dis- ;
F cussion in [2, p. 351]). "
For simplicity we will consider from now on examples with no quadratic :
. mean derivative, i.e. k=0, such as the stationary Gauss-Markov process, the
stationary process with triangular covariance, the Wiener process, in which case .
we have g
b 2 .
2. 2 2 ay a(t)e ()
(el - el) - ‘]I?J _.Y_’Qz—dt. (7)
-, i n 4 h®(t) -
“~ g
" s
An asymptotically optimal reqular sequence of designs {T;} is generated by E
’ the density h*(t) proportional to [mY O(t)@z(t)]1/3, with .f
: 2, 2 2 1 (b 2, ,141/3,3
. n ('-r*,n - ) ; ¥ {Ja [‘Y,O(t)A (£)] "7 V4t (8) .
’ >
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The VWiener-Hopf Eq. (5)

From (2) and (5) it follows that a sufficient condition for these precise

rates is the existence of a continuous function ¢ such that

b
[ RY(t.u)w(u)du =
)

} Ryy (tsu)f(u)du (=a(t)), (9)
a a

asts<b, or Ryo=Ry f (=9). It may be desirable to first check the existence .
of a square integrable solution, and then check its continuity. In this connec-
¢ion it is of interest to note that a square integrable solution ¢ of the 'iener-

Hopf integral ecuation (9) will exist for every square integrable f, if (and only

1f) any of the following equivalent conditions are satisfied:
: !
(1) r{Ryy) - r(Ry),

(ii) ||RYXe|[2 ;CHRYell2 for all square integrable functions e

and some finite constant C (where the norm is LZ),

(ii1) for some finite constant C,
b

b
c [aRY(t,u)RY(s,u)du _ Ja Ryy(£1U)Ry (5,u)du

is a nonnegative definite function of t,s,

(iv) the minimum mean square error linear estimate I of I based on

{Y(t), a <t < b} is of the form (with ¢« L2).

. b
- J Y(t)o(t)dt.
a

In this case the expression of the asymptotic mean square error (3) can be writ- A

ten as follows:

2
€= [foff- ijY¢¢.
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Simple Coefficients

Here we consider the very simple choice of (non-optimal) coefficients of

N

the following form: for each sample of size n, T = {tnk}Ez] , we take el
%

1
c = —c(t )

Tn,k n nk 3

for some continuous function c(t). Thus the coefficient Cy of Y(tnk) .
nk o]
depehds only on the sample point tnk via an appropriate function ¢, unlike the !’
optimal coefficients which depend on the entire sample Tn‘ iif
For a seguence of median sampling designs {Tn} generated by the density =

h we then have

n
B 1
Im,n “n Z C(tnk)Y(tnk) B YT ’

k=1 nn
2 _ 2
em’n = E(I-Im ’n)
S [ IRfF-2 +

and by Lemma 2 1in [4],

(1]
1]
—
=5
®
3

I 7 Rxff -2 /chg+ /S RY(ch)(ch)

1}

I r Rxff -2 77 RYX(Ch)(f) + /7 RY(ch)(ch) (10)

= £ ( /Xf - 7 Ych)?

.........................

........

..............................




A reasonable way of choosing the weighting function ¢ is by minimizing

the 1imiting value of the mean square error ei - 1t follows from (10) that

2 ’
[n ’(n
subsection) if RY¢ = RYXf has an L2 solution ¢, in which case ¢ is determined

= 2 if and only if f¥ch = T or equivalently (by (iv) in the preceding

by
c(t)h(t) = o(t), a<tc<b. (1)

Also any smoothness requirements imposed on ¢, such as continuity (which has al-
ready been assumed) or twice continuous differentiability (which will be required
shortly) would have to be satisfied as well by the L2 solution ¢ to the Wiener-

Hoof integral equation. When RY¢= RYXf does not have a continuous (resp. twice

continuously differentiable) or even an L2 solution ¢, then one can find a con-

tinuous (resp. twice continuously differentiable) ¢ with corresponding mean square

error ei » &xceeding ci by an arbitrarily small amount (and in the latter case

’

no minimizing L2 function c exists). This is because random variables of the
form /Yy with y continuous (resp. twice continuously differentiable) form a
dense set in the linear space of Y, so that given any §>0 we can find a continu-

2

ous (resp. twice continuously differentiable) y such that E(I-wa)Zs 8" and

choosing ch =y we have

1
= £ (rxf - 1yy)?

(1]
1

e (rxf-1)2 + €2(1 - ryp)?

[7aN

A

e + 6.

[e o]

We are thus lead to consider the following two cases.

Case 1. RY¢==RYXf has a twice continuously differentiable Lo solution ¢.

Then ¢ is chosen by (11) and

et LT Wt -
.........
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n
_1noelty)
Im’n = ﬁ kZ] F(t_nk)' Y(tnk) ’ (]2)
2 2 2{¢) 1 (¢} ¢
e -€=ffR¢>¢-—[— (Reo), + 4 (4 R[4 .
mn = e Y n h,Tn YT 2 T .70 n T

Assuning the observation process Y has no quadratic mean derivatives (k=0),

R, satisfies the same regularity conditions required for (7), and ¢/h is twice

Y
continuously differentiable, we obtain from [4, p. 94],

b o 2(

.

Thus choosing h*(t) proportional to [aY 0(t)¢2(t)] ]/% we obtain a sequence

(t)
(t

t)

] dt .

¢
Y,0
i (13)

of median sampling designs {T;} whose corresponding estimators{Im*’n}are
asymptotically optimal. Comparing the asymptotically optimal sequence of
estimators using median sampling and nonoptimal coefficients with the asympto-
tically optimal sequence of estimators using regular sampling and optimal
coefficients, we see that in both cases the design is determined by the same

density h*(t), while the estimator coefficients require solving an integral

equation in the former case and inverting an nxn matrix in the latter.

Case 2. RY¢= RYXf has no twice continuously differentiable solution ¢.

In this case

with strict inequality for all choices of twice continuously differentiable c.

Thus the asymptotic performance is always inferior to that achieved by using

optimal coefficients. It turns out, however, that the rate of convergence of

2
e

m.p can be found, while under the present conditions no rates are generally

known for optimal coefficient estimators.
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To see this we write
e2 - e2 = {] c: R c. - [ff R,(ch)(ch)}
m,Nn mee 2 T Y, T T Y
n n nn
(14)
1 .
-Z{E-CTn(RYXf)Tn - Is RYX(ch)(f)} .

Assuming as in Case 1 that Y has no quadratic mean derivative (k=0), that c
and f/h are twice continuously differentiable, that RY satisfies the same re-
gularity conditions required for (7), and that RYX satisfies similar regularity

conditions, we show in Appendix A that

) 2 cf - =
7 Tadloy o - By | ¥ Ayxf - Ayehl] (13)

where

Br(t) = [R}:O(t-,t) - Ry O, )] - [RO; N (t,t-) - RO:T(t, 000,

Ay(t) = 0 (B) (e (bR (b,t) + c(b)RyO(b,)1 - 07 (a) e (a)R fast) + caR Y1),

and AYX likewise with RY replaced by R It should be noticed that BYX(t) =0

YX:
when X and Y are jointly stationary, as well as when RYX(t,s) is a symmetric
function of t and s; the latter is the case when Y =X, or Y =X+ independent noise
(see Section III.A), or even when Y is a zero-memory nonlinear transformation of
X (see Section III.C) possibly plus independent noise (see Section III.B).

As has been nointed out in the paragraph following Eq. (10), in this
case the estimator weights c(t) should be chosen in such a way that the resulting
asymptotic mean square error ei w Of (10) whould be close to its minimum value

ei. This is the primary consideration in choosing c, and any further considera-

.
v

tions such as those resulting from the form of the asymptotic constant in (15)

are only of secondary importance. Since the asymptotic constant in (15) is not

necessarily positive, some choices of c may produce a negative value indicating

1°g
i
R
3
|
Ot
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that for sufficiently large n the performance would be at least as good as ei’w,
whose value would perhaps be appreciably larger than its minimum. Also judicious
choices of ¢ may exist which render the asymptotic constant in (15) equal to
zero, indicating a faster rate of convergence which is not currently known.
However, the dependence of AY’AYX on the boundary values of ¢ and ¢ “ complicates
the question of existence of such c's, and more significantly, even though one
can derive the general form of such choices of ¢, it does not seem feasible to
determine how close the resulting asymptotic mean square error eé’m can be to

its minimum ci. We therefore do not pursue this matter any further. Incidentally,

the estimator weight which minimizes the asymptotic constant in (15) is given by

c(t)h(t) = ZTY—]E(U {Byy (£)F(t) + A (t)h

2(t))
for a <t <b, with appropriately deternined values of c(a), c(b), c'{a), c'(b) via a
system of four linear equations resulting from the denendence of AY,A

vy ©On
these, and with corresponding minimum value of the asymptotic constant in (15)

] 1 f
T 43 LW O(BYX h

2 1
+ AYh) * 17 fAYxh.

Recall that in the noiseless case Y =X, we have ¢ = f and the appropriate
choice of ¢ is, by (11), ch=f. It is therefore of interest to determine the

best constant multiple of f as a possible value of ch. Thus putting

c(t)h(t) = xf(t) a t- b, (16)

2
m,

the asymptotic mean square error ei o 1

in the expression (10) of e we find that the value of X which minimizes

) ffRYXff

\
A
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with resulting estimator in this case of no quadratic mean derivative

, f(tnk)
bnon ™ ) h(t .7 V) > (18)
k=1 nk
minimum asymptotic mean square error value ?
) (erYXff)2
e = ffRXff -—_— (19)
" 11 RyFE
and asymptotics
P(e2 e ) > L 0f0ay -8 ot [hyy - M) (20) |
mn” “mye! A T2 %Y,07 Px2 yx -~ Ay \

The estimator (18) has the advantages of being generally applicable
and fairly nonparametric, in that it depends on the correlation functions only :
via the integrals in (17). In sharp contrast, the estimator (12) requires the
solution of the integral equation and thus fairly detailed knowledge of the \ K
correlation functions, and so does of course the optimal coefficients estimator. .
Thus the estimator (18) is more robust with respect to inaccuracies in our
knowledge of the required correlation functions than the other two estimators.
It con be used for its simplicity and robustness, instead of the estimator (12),
even when the inteoral equation has a twice continuously differentiable solutinn.
j.e. in Case 1, and in this case one would want to know how much »erformance is

is lost asymptotically because the limiting mean square error e; o of (19) exceeds :
] 4 .

o

+_y i.e. one would want to comnute

2 2 2
€ ™ Cu T RYFF IRy FO - (17 Ry, )
2

€

Ir RYff (/s Rxff - IS RYXfo)
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Observation process with rational spectral density .P
’
b
When the observation process Y is stationary and has rational spectral :'

O

density, the integral equation (5) or (9) has a solution which contains o
delta functions and their derivatives at the endpoints of the observation &1
interval [8,Ch. III, Sect. 7]. In particular, when Y has no quadratic mean F
derivatives (k=0) then the solution contains only delta functions so that =
b o
g(t) = Ja RY(t-u)¢0(u)du + ARY(t-a) + BRY(t-b) ;?

:’-

."'

where 9% is a continuous function [8]. In this case Sacks and Ylvisaker [9]

")
show that their asymptotic result is still valid with ¢0 playing the role of $'
o

_ b :

2,2 2 oy o [° %

n?(e2, <) | (21) -

ah N
It is also straightforward to check that if we adjust the simple coefficients 'ﬁ
estimator using median sampling designs {Tn} by adjoining the endpoints with -
I:..

appropriate weights and if we choose c(t) from c(t)h(t) = ¢o(t): -1
)
. n-2 ¢.(t ) ~y

= AY(a) + BY(b) + 1§ M2kl yp )y (22) -

m,n n-2 ¢ h(t ) n-2,k
n-2,k .
o~
(n>2), its mean square error eﬁ n = E(I-Im )2 satisfies f;;
9 9 [
’ .
2,2 2 %0 (° %
"“lepn - ) 2 TR fa—h’z ’ (23)

i.e., it converges to ei (rather than to the larger ei ) and with the same rate

2 . . . , .
as Cr,n’ provided ¢Q/h 1s twice continuously differentiable. Thus in this case

« 9,
.
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the modified simple coefficient estimator using median sampling is asymptotically

ST X

optimal.

In closing we should note that while the assumption of rational spectral

i A A

density is frequently reasonable, such as when the observation is signal plus

-

noise, there are important cases where it is unlikely to be satisfied, such as

those considered in Parts B and C of Section III.
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IT1. SPECIAL CASES AND EXAMPLES

In this section we consider several special cases of noisy observations

of interest.

A. Independent Signal plus Noise

Suppose that Y(t) = X(t) + N(t), a < t < b, where the noise process N is
independent of the signal X and has zero mean. In this case RYX = RX and
RY = RX + RN. We consider in more detail the following two special cases.

Gauss-Markov Lignal and Noise

Suppose we desire to estimate the average of a Gauss-Markov signal over
the unit interval, when observed in additive independent Gauss-Markov noise,

i.e.,

x
>
-
=
S
1

=0 exp[-aX[Tl] .

2
X
2
N

=
=
——
A
A
1l

Oy exp [-aN|T|] .

f(t) =1, 0<t <1,
In this case
2

8]

X
a_(2°e -e ) ’
X

1
o(t) = JO Ry(t-u) du

0<t< 1. When ay # ay the integral equation (5) has a solution ¢ containing

delta functions:

s(t) = ¢0(t) + M {8(t) + 8(t-1)1, (24)

:},\',\}:.’.v.\.}s}v:.s}\x\. AT TN T AN N e N

LY

Ol S S A A T A A .'- 0 :. - .:. .‘... -
PO AR A A0 AL 3, A SN N L
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$ where
o og(t) =M + M, {exp[-at] + exp[-a(1-t)]} (25)
Y
:y and the values of the constants M, M1, M2, and a>0 are aiven in Apnendix 8.

. The optimal mean square estimation error is computed from (3),
{ ei = o - \\g\lg(Ry), where

3 2 _ ('[! 2, 2., %X b 2

S o2 - Jo JO Ry(t-u)dt du = (205/a2)(e *-14ay) = v2

- 2 1 o

f and |lg|lR(RY) = JO g(t)e(t)dt is easily calculated.

y

i This optimal error e is the limiting (1arge sample size) value of the mean
s square estimation error when using optimal coefficients and regular sampling,
T: cf. (21), or the adjusted simple coefficient estimator of (22) and median

j sampling, cf. (23). When using median sampling with the nonadjusted simple
j coefficient estimator (18) with the optimal constant X of (17), the limiting
X value of the mean square estimation error of (19) is given in this case by

? eﬁ . rirﬁ

: T Tx Ty

. and the optimal scaling constant by A = ri / (ri + rﬁ). Asymptotically,

N the loss of performance by using the nonadjusted versus the adjusted simple
S coefficient estimator can be measured by the ratio 100(e$’m - ei) /ei which
N is plotted in Figure 1 for a range of parameter values. It is surprising
j that over a very large range of parameter values this ratio does not exceed

3 nine percent, indicating only a moderate loss of performance when the simple
)

coefficient median sampling scheme is not adjusted by including the interval
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) endpoints with appropriate weights. Only as aN/aX approaches zero the loss

of performance becomes large, indicating a substantially improved performance

of the adjusted scheme.

In Figure 2  we show how the asymptotic mean square error decreases
with increasing sample size n in the following cases by plotting the corre-

sponding asymptotic expression of the mean square error:

(a) no noise, uniform sampling, optimal or simple coefficient estimator:

10 Togyq {(aX/G)n'z} (with dash-dot line) (26)

(b) noise present, uniform sampling, optimal or adjusted simple coefficient

estimator {cf. (21) and (23)):

2 . 1 2, -2 |
10 Togy, feo + {5 (ay + ay)s og} n" (with solid line), (27)

(c) noise present, optimal estimator with optimal regular sampling, or

3 simpler coefficient estimator with optimal median sampling (cf. (21) and

(23) with optimal h* proportional to |¢ 2/3):
0

10 1ogqq feg # {%(ax F aN)(f|¢0|2/3)3}n'2} (with solid line),

(d) noise present, uniform sampling, nonadjusted simple coefficient estimator

(cf. (20))

10 1og;, {ei 2t Cn'z} (with dotted line),

where

-a -a
C= 3 irag+a) - (1-n)ok(1-e %) +aoi(1-e Y.

A

-

‘& E
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Boete e v

oo n)
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As it turns out, the constant term M] of ¢O is much larger than the MZ

term for the values of the narameters we plotted. Hence ¢O is nearly always

flat and the optimal sampling density h* in (c) is nearly uniform, i.e.
2/3,3
(1ogl*3)

identical. Note also that the expressions we plotted for n=2 to 21 are

nearly equals f¢g, and in our plots cases (b) and (c) were apparently

asymptotic values valid only for large n (typically n > 8). In Figure 3 we give
some plots of the actual mean square error for n=2 to n=12, for the case of

2_ 2_ . _
ox-cN-aX-1 and ay
curves (the (b) curve of the previous set) in order to compare with the actual

=2. In this figure we also plot one of the asymptotic

values. As can be seen, the actual and asymptotic values are very close even
for n=5.

It is of interest to know how many samples are required asymptotically
te attain a given performance, say for error (1 + B)ei. When no noise is
present and uniform sampling is used with optimal or simpler coefficient

estimator, expression (26) gives
2 %
NN, U 6(1 + B)Ei

With noise present and uniform sampling with optimal or adjusted simpler

coefficient estimator, expression (27) gives

a, + a
2 X Nfd’g

n =
N,U 68 Ci
“he ratio
n
N,U _ 2 V2
nNN,U {1+ ax;hN) (Y +1/R) 1 ¢0 }

summarizes the effect of noise upon the necessary sampling rate. We have

plotted this ratio in Figure 4 for some representative values of the
parameters. Again as aN/ax approaches zero the effect of noise becomes much

more marked.
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Proportional Signal and Noise Correlations

We now consider the case where RN = yRX for some positive constant v.

In this case RY = (1 + y)Rx and g = s = Rxf = (1 + y)']RYf so that the integral

equation always has a centinuous solution ¢ = (14'y)-]f. He also have ay o~

(1 + Y)aX,O and

€ = JIRFF - 1 Ryo = (1 -
1+
v

1 J X,0 A
12(1 + y) h? 14y

and similarly for ei n’ rrovided f/h is twice continuously differentiable. Thus
the asymntotically optimal sampling density h* is proportional to (aX sz)]/j and

thus independent of the noise (i.e of y). For larte saanle size n, both ¢ and

N

m.p are anproximately ecual to
9

In Fiqure 5 we have plotted this expression for Gauss-Markov signal
with i 1, ay = 1, for f=1 (average of process) and h=1 (uniform sampling),
and a, = 2a, = 2, hence A° = 1/6, o = fpfy @ 18Ul 4tdu = 2/e. The expression

is plotted as a function of n (= 1-20) and parametrized by y with

(a) (circles)
(squares)
(pluses)
(stars)

0 (no noise) (lines) .
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) o
N As in the previous case it is of interest to know how many samples are :
4
needed asymptotically to achieve a certain mean square error 52:
' v(1 + y)']o2 < €% < 3%, It follows from the asymptotic expression (28) of A
"
the mean square error that ;
2
- n?(y) = A ,
y e? - y(o® - €7)
N and with no noise present
2
: n2(0) = A_.
€2
The ratio y
n(y) . € R
. 0T (g2 y(o? - 62)}1/? 3
S increases with y from 1 to infinity as y approaches ¢%/(s? - €’). The first
order (linear) approximations in y are for the weak noise case, i.e. v . 0, <
N
. , X
g n(y) 44X ot ¥
: noy - 'tz (oo 3
and for the comparable noise and signal case, i.e. v ~ 1,
2 2
n(y) € {]+V-1o-e \ .
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B. Nonlinear Distortion plus Noise.

Suppose that the signal X(t) has suffered some nonlinear distortion,
in addition to being corrupted by noise, i.e. that the observation process

Y(t) is of the form

Y(t) = A(XIt)) + N(t)

where X(t) is stationary and Gaussian with mean zero, A(-) is a memoryless

nonlinearity such that EAZ(X(O)) < o, and N{t) is an independent, zero-mean,
E wide sense stationary noise. Then Y(t) is wide sense stationary and, 2
b assuming for simplicity that RX(O) = 1, we can write
2 3 ai k
£ RY(T) = Z - Rx(T) + RN<T)
k=0 k.

where a = E[A(X(t)) Hk(X(t))] and {Hk(x)}k are the Hermite polynomials.

Also, by the cross-covariance property, we have

where d = E[A(X(t))X(t)] (see [11). Therefore g = Ry,f = d R/f = ds and -
o~ 2 2 . '
Lm0 = lsllggg,)

It should be noted that if A is an even function then d=0 and R, =0, o

YX~ "
i.e. the observation process Y is orthogonal to the signal process X, and -
1Y

thus no linear estimate based on Y is better that zero as an estimate of the

integral of X. We therefore assume throughout that A is such that d#0

(e.g. an odd function).
When optimal estimator coefficients and regular sampling are used,

the asymptotics are determined by (7) with rate of convergence 1/n2,
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provided the integral equation RY¢ =d Rxf has a continuous solution

¢, and RY(T) has the needed differentiability properties, i.e. a finite
positive jump -y o in its derivative at zero. When the simple estimator
coefficients and median sampling are used then the rate of convergence is

1/n2 provided RY(r) has the needed differentiability properties, and the
precise asymptotics are determined by (13) when the integral equation

RY¢ = dRXf has a twice continuously differentiable solution ¢ and the estimator

(12) is used, and by (20) when the estimator (18) is used.

Smooth Limiters. As anexample, let us consider the so-called smooth limiters

X 2,2
0

for which

It is easily seen that if RX and RN have the needed differentiability pro-

perties to define Gy o and Oy

0 then so does Ry, provided v > 0, and in fact

2
2K aX,O

— * oy,

%vo & T
m W(v + 2)

Also Oy 0 " dax 0 Thus, provided v > 0, the rates of convergence remain

l/nz, as in the absence of nonlinear distortion.

Jdarcd Limiter. The case of a hard limiter
A(x) = K sgn(x) = AO(X)
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requires special attention since, assuming RX and RN have the needed

differentiability properties to define ay o and N0 it follows that

t
ay g = = indicating a rate of convergence slower than 1/n2. This is because X
’ 2 '
_ 2K : '] 3
RY(T) s sin (RX(T)) + RN(T) )
implies Ry(0-) = +=, RU(0+) = -=. While the first derivatives of R at O+
e
are not finite, we notice that the "one-half derivatives" are. Indeed we have .
Ry(0) - R, (1) 7
40 (-1
o
Ry(7) v
2 [1 - RE(7)1/@
_ 2K 1i X
BRIV 1/2
40 -3 (-T)- /
_ 2K2 15 2 RX(T) ::
=g m 172 -
™0 (1 - RX(T) o
—_ .1 + RX(T)] .
-T L)
B L VG UIPN I X
- . 17‘2 - T {ZRX (0')} .
{ZRi(O-)}
)’
2 A
= 2K /2. X
=7 ™Xx,0 "
3
!.
Similarly
1 »
(]/2) A . RY(T) = RY(O) _ 2K2 (1/2 »
RY (0+) 2 1im 77 = - X.0
+0 T m > -
;

and thus
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2

s (1/2) (1/72) -4k Y,
ay qz2 - Ry TTH0-) - Ry TTHOH) = ey

The expression (14) for the mean square error when the simpler coefficients

are used becomes in this case:

e2 - erf,_ {‘—,Z Ry 1 ¢y = SR (ch)(ch)}
n n n

-2d{%- c'Tn(Rxf)Tn - 11 Ry(ch)(f)} (29)

A (1st term) - 2d (2nd term).

For the second term we have as in (15) (cf. Eq. ( ), n2(2nd term) » finite
constant, nrovided c and f/h are twice continuously differentiable. The rate
of convergence of the first term can be found in a similar way. Instead of

using, say for 1 >0, R(r) = R/ (0) +TR7(0+) + o(r)  we new use

RY(T) = RY(O) + /T R$]/2)(0+) + o{/7) (and similarly for t < 0).

It is shown in Appendix C that, provided ¢ and h are twice continuously differ-

entiable, and RX’RN have finite one-sided second derivatives at 0, we have

2
3/2 (ch) q
where
y = ;_(g _116;(%)) ~ .21225 (30b)
and ¢(3/2) = Zi=]k'3/2 = 2,612 is Riemann's zeta function evaluated at 3/2. The T
1Y

first term in (29) is thus the dominant one, and in this case of signal and

noise with no quadratic mean derivative we have

2
3722 2 . ch
(en,n ™ €m) YO‘Y,]/zf o372
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Hard 1imiting thus reduces the rate of convergence by a one half power to ]/n3/2

PSS

from the rate of 1/n2 of soft 1imiting or no nonlinear distortion. If ch is

chosen proportional to f, then the sampling density h* which minimizes the

asymptotic constant is proportional to lf|4/5.
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C. Quantization

In applications one frequently has access only to quantized data. Here

we assume that our observation process is

Y(t) = 6(X(t)) 3 OX(t)

\

where 0 in an N-level quantizer with Q(x) = Yi when X <X <Xy where

YALAAAAY

0 = Xy <Yy € Xy < Yo i Xy S YN < Xy F 4+ and X = (yk + yk_])/z for
k=2,...,N. The process X(t) is stationary and Gaussian with mean zero and
variance one. (More generally X(t) can be taken any wide sense stationary

process whose bivariate densities have a diagonal expansion, so that the cross-

o
‘e
A
K
‘e
s
.

covariance property holds — see [1]).

Optimal Coefficients

We first consider the case where the optimal coefficients estimate based on

SRR,

v
- -

the quantized samples is used:

~

- Al - ' "]
.7 = S, 1%7 = 99, 7Rox, 7%

LKA

where 9" RQX Xf==dQRxf==ng, g= Rxf, dQ = E[QXx(t)X(t)]. Denoting as usual by
2 . . . Y v - oae-]
IT the optimal coefficients estimate based on the samples XT .IT-cTXT— gTRX,TXT’

we can write the mean square error as

. 2
€0.7 E(I - IQ,T)

~

B - 1%+ E(Ty - 1y P2 e 2601 - 1 - T 3

The third term vanishes as E[(I - IT)IT] = 0, since fT is the projection of I

onto the linear span of XT’ and, by the cross—covariance property,

E[(I - IT)IQ,T] = E[(/Xf - c+XT) cé,TQXT]

e e e e A e T e e T e e SR T e e e e e AT I CAEATRT

DRREN CSEAL R R A I AT I TR ’- 'f.f- - ..-_-_-...'. ................. o ...'-..‘.

< ) ) .".:’ .o 8, s TN A A A T Kt > LA LR LRGN % RIS I TR ORI
- » ¥ » o B
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* Jog,r (UEKEI (G N0 - for SEIX()A(5))])

= dy ECQ’T’k{fE[X(t)X(tk)]f(t)dt - %cT,J.E[X(tJ.)X(tk)]}

dQE[(I -1;)

Thus the mean square error decomposes into two components:

2
€Q,T

2 2

=Eu-ip o

T2 2 A 2
+ E(IT-IQ,T) Septe

The first term is due to sampling and has been discussed in Section II; its ex-

pression is 62 = 02 - |ip g||2, . The second term is due to quantization of the
T T R\Rx)
samples used to estimate the integral, and is given by

- '_'l |‘] 2
eq,7 = E(91Ry 1¥r - d9tRoy 1 Xy)

o] I
IRy, 197 ~ 9Q97gx, 197

"

2 2 2
= ||P-g - d2|iP+9
Il T IIR(RX) QII T |IR(RQX)

where the cross-covariance property has been used. Thus when using a regular se-

quence {Tn} of sampling designs we have

2 _ 2 2 2 L2 2y 2 A 2

EQ,r,n o dQ”angllR(RQX) n 9 - dQ“g|IR(RQX) eQ,w‘
(That ge R(RQX) follows from ng= 9g¢ R(RQX), cf. statement preceding Eq. (3)).
It follows that

2 2 _ 2 2
“Qran ” 20,7 YQll9Pr8llRery,)

and the conjecture here is that, as in the case of hard limiter, its rate of

convergence to zero is n'3/2, when X has no quadratic mean derivative (k=0)

&S

A d4

LIS

*




and the derivative of RX has positive jump ay o at the origin, and where

RQX¢ = Rxf has a continuous solution ¢ (but no proof is currently available).

Simple Coefficients

Next we consider the case where the simole coefficients are used along
with a sequence of median sampling designs generated by the sampling density hs'

The resulting estimate is

n.qun E c(ty (Jax(t, )

= 2
= E(I - Im,Q,n)

2

—cr (R f), + c
n Tn 0X.X Tn

s Rxff - T R

c
n OXT ST
55 RyFE - 25 Ry ((F)(chg) + 17 Ryy (eng) (chy)

2

= €[ 7 XF - £ (00(ch )P 4 €,

(31)

Q,»
only if the projection of I=[Xf onto the span of QX is of the form [QX-¢ for

by [4, Lemma 2]. The asymptotic error e is minimized for some cshgs if and

some ¢ ¢ L2 ( in which case then chs= ¢), or equivalently if and only if there

is an L2 solution ¢ to the integral equation dQ-RXf= RQX¢' From (31) it is

clear that as N»w, es o~ E[fx(f- chs)]z. Thus asymptotically for large
N*-

nunber { of levels of quantization, the best choice for ¢ and hs is

c(t)hs(t) = f(t) , a<tc<b. (32)

Throughout the rest of this subsection we assume this to be the case, so that

2 _ 2 _
€),w = E [/ (X-Qx)f 15 =/s Ry-oxff-

tinder this assumption the mean square error is again, at least
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asymptotically as the number of samples n tends to infinity, the sum of a
mean square error due only to sampling and of one due to the quantization

of the samples. Indeed with

_ 1
Im,n - E'E c(tnk) X(tn,k)
we obtain
e =1 -1 Vel -1 )22 [I-1 WL -1 )]
m,Q,n m,n m,n m,Q,n m,n’*"m,n m,Q,n’-"

By the cross-covariance property,

ELCL - T ) Tngund = dELCT = I ) T )
and
1 1
EL(T -1 )T ] =<cs (RyF)y - c+ R c
m,n’ *m,n n T X ;?' T X,T.°T,
> [/ Rx(f) (Chs) - Ir RX (Chs) (Chs)

=0,

by (32). Thus the cross term in (33) tends to 0 with n.

2
Q,

that RX has finite one-sided derivatives at 0 required for the definition of

We now study the rate of convergence of e; 0,n to e as n»w, assuming

Ay o As in Section II.B, we have

1
Qn

: |
c1 (Rxf)T + ;7 cr ROX,T cr

Ir Rxff - 2d
n n

=01 (Ry - 2dgRy + Roy) fF

(33)

PR A ST )
4%ty N Y

oo s,

s & % v}

1
= {— c+ R Cr =SS R, ff}
n2 Tn O_X,Tn Tn 0X
1 .
-2dQ{ﬁ-cTn(Rxf)Tn - 1] RFf}
N L T DA AN SRR A N SN ST e e
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4 (1st term) - ZdQ(an term).

Assuming that f,h,f/h are twice continuously differentiable, we have for the
second term as in (15) (cf. Eq. (51)), n2(2nd term) -+ finite constant. It is

shown in Appendix D that

0,172 (zo‘x,o/“)szQ (342)
where \ 1 )

Bq = % kZ-Z(yk 'yk-l)ze_ A (340)
and that as 1 -~ 0,

1 R () > Jogy, - (35)

This case generalizes the hard limiter case considered in Section II.B. In

fact an inspection of the proof of (30) in Appendix C, shows that the relation-
ship between X and Y affects the asymntotics described by (30) only via ay 1,
and 54(b), which is identical with (35) above. It then follows from Anpendix C,

or (30), that provided RX has finite one-sided second derivatives at 0, we have

nae(lst term) - Yooy 5&f —g?
; hsk
with vy given in (30b). We thus have
Yoy 2 2 Yoo (£
n (em,Q,n -eQ,m) > Y(Z“x,o/“) BQIEEZ- (36)

Quantization therefore reduces the rate of convergence by a one-half power to

-%

n ‘¢, independently of the number of quantization levels; and the optimal

sampling density hg, which minimizes the right hand side, is proportional to

AN A SN g ]
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It is very fortunate that in (36) the effects of quantization and of

WXL R XA

sampling are coupled in a rather simple way. For large n:

2 ot
2 el | Voo £° ;
em,o’n = eQ,w + n7;8()‘Y(2(1X,0/‘n) Ih:é (37) :?

This can be used to study the interplay between the number N of quantization ¥4
levels and the number n of samples used, asymptotically as N and n tend to
infinity. Suppose that a "regular" sequence of quantizers {QN} based on a

continuous density h, is used, i.e. the levels y <y <...<y of
2 N,1 N,2 N,N

quantizer QN are, respectively, the 1/(2N), 3/(2N), ... , (2N - 1)/(2N) o
quantiles of hQ. With p(x) denoting the standard normal density of X(t), _t‘
choosing hQ proportional to [p(x)]]/3, i.e. N
% 3
ng(x) = — e 8, wcx<aw, 2
vor .
we obtain an asymptotically optimal sequence of quantizers. As in [3], with
: IN, k y
N hg(x) dx = hplzy ) Yy = Yy 1)
IN, k-1
. . -1. . .
for some yN,k-] < ZN,k < yN,k’ we obtain (assuming th is Riemann integrable :
over {-»,»)), =
_l (y -y 2 )
\ : ? o 8 Nk T INk-T) : )
N S - o
O 7 ki Ik T N k) X
hQ(zn,k) :
-§(20? - .
> — J L dx = J h(xi dx pig
N /E -0 hQ(X) =00 Q :':.
X
[

When hs is used the asymptotic constant becomes

P T S RO SR SR
..............................
...................................
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M -00 * b,
h
Thus for large N, ‘ ,
rr;
~ 1 p o
B - —_— —_——
0w
N hQ '
3
The precise rate of convergence to zero of es - Seems harder to determine. K
" N’ )
¥ -
) However we have the following bound, assuming / ph&2 < o, -
2 b 2 H
2 =g J [X(t) - QX(t)] £(t) dt } :
QN’OO a L.
.
b [4
= [ 7 Etxe) - ou(e)] IX(s) - QX()] £() F(s) ot ds |
a -::
: 2 (P .02
< Ele) - quxen® (| 1£p% .
a
and by [3], 3
2.2 2 2 (P 2
. N"eq o < NELX(Y) - Qy(X(t))] () If| R
a N? a -
o b -
1 2 .
; 17 J _%—h (J lf| -
-00 a -
Q -
S
Again, when hs is used we have ~
J NI N S ::::
\ 2 .
o [h*
[ A (x)] .
&
y Thus for large N, -
3
2 11 2 -
Q- <z 17 | UIF. (39)
Q -
N




From (37}, (38) and (39) we see that for large N and n

2 1 1

2
®m.0yn = 7 { T—J—z—(“fn } o+ —37—2—{y 20 /) /szf 3/2

&£ C + D
EZ N n3

The bound (40) can be used to determine the allocation to quantization levels

N and sample size n to achieve mean square error not exceeding a desirable

n3/2

value €°. For instance if we choose N = the required numbers of quanti-

)]/35'2/3. Also the

zation levels and samples are N = (C + D)1/2€-1’ n=(C+0D

more interesting problem of minimizing the total number of samples N + n (or
some other function of N and n reflecting quantization and sampliing costs)
subject to mean square error not exceeding a desirable value €2 can be solved

(numerically - analytic expressions being hard to obtain).
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APPENDIX
A. Proof of (15)

Here we find the rate of convergence and the corresponding asymntotic
constants of the two terms on the right hand side of (14). These results cor-
rect (and in fact the second also extends) the statements in [4] displayed be-
tween Egs. (3.36) and (3.37); the final result (3.37) in [4] remains correct.
For simplicity of exposition throughout the following we do not display the
terms of higher order and we use = to indicate equality up to higher order
terms.

Sampling points and subdivision boints
t
The sampling points tn , are determined by fan’kh = (k-%)/n, k=1,...,n.
? S
Introduce the interval subdivision points Sn+1 .k by fan+]’kh= (k-1)/n,
k=1,..., n+1, so that each tn,k 1s the median of (Sn+],k’sn+],k+]) with re-
spect to h. For notational simplicity we drop the subscript n from tn K and
n+1 from Sn+1,k'
By the mean value theorem
Lk
- = s{ h = h(wk)(sk+1 —sk), (41a)
t
1. K
5 * [ h h(ak)(tk- sk), (41b)
S
k
L Sk
Ly
where sk<:wk< sk+1, S <3< tk< bk< sk+]. It follows that as n-o«,
b sk hwd
Se.1-S, 2 T2 (42)
k+1  °k h(ak)
n
~
e e A e Y L T e T TN T T T e L e
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TN TS TSN

P el N N

so that asymptotically as n-»«, t, is the midpoint of (Sk+]’sk)‘ We will need

the order of magnitude of the difference of the two pieces

D t (t, -5

kT et - (-8

Substituting h(u) = h(tk)+-(u— t, Jh”(int. pt.) under the integral in (41b) and
(41c), using the mean value theorem and subtracting the resuiting expressions
we obtain

h‘(b&) h™(a!)

. 1
Dy = - 8h(tk)[h2(bk) (43)

The first term

We first consider the first term on the right hand side of (14), which

can be written as follows with K(u,v) = c(u)RY(u,v)c(v), a symmetric function,

b
1st term 4 J; ) c(tk)RY(tk,t.)c(t.) - [/ RY(U,V)Ch(u)ch(v)dudv
n" ka.) J J a
Sk+1 S+ ,
= T F T Kbty - K(u)In(un(vduay & ] 1
k,J Sk Sj h,j ©*

The integral over each diagonal square is split into the following six

regions, and by symmetry it suffices to consider only regions 1,2 and 3.

A
SH1L“‘ r ;
l l4 ’
i L
é 5 s
T,
RN R SRR SR
6k/’:
L7 ]k ! 2k
S b A -
Lo ! |
f/ | I |
L.».V Lo f.. ——L
. Sk tk Sk+-|

.
.
Y
~.
L-
Y
“
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We use the Taylor expnansion of the integrand:

K(tst,) - K(u,v) = K(t,ot,) - K(t,,v) - (u -tk)K]’O(xk,v)

0,1( 1,0(

-(v- tk)K tk,yk) - (u -tk)K xk,v)

where x, is between y and tk, and Y is between v and tk. Over each region

k
both u - tk and v--tk have constant sign so the mean value theorem is applica-

ble. For region 1 we have

{{( R R LICRUICRI I CEERETY

K
* K]’O(ak,bk)h(a&)h(b&){f - (u-t,)dudv
k
= 0T (a b dn(adh(b,) + 1k 0ar br)n(at)h(by)3 (¢, - 5,)°

where the noints (ak,bk) and (a&,b&) belong to ]k' Using (41a) and (42) we

obtain
h(a,)h(b,) h(a!)h(b!) t -s
nLff = TR0 (o ob )+ IO b — KKy ka3 )
k1, K h (w,) h (w, ) k+17 5k
by 0,1 1.,1,0
> KT T (tht) + 2K o (t+,t) Hdt.
a
A similar argument gives
b
03 1 2 [ ) - 0ttt
k 2k a
2 b 1.0, 1.,1,0
n X ff -ﬁ f{- ?4—8'4< ’ (tat') - ?‘K ’ (t+§t)}dt.
k 3k a



Putting these together, and using the symmetry of K, we have for the diagonal

terms
b b
2 17,.0,1 92,1 _1 2
n Elk’k > §£{K (t,t-) - K> (t,t+)}dt = 6£aY’0(t)c (t)dt. (44)

Over each nondiagonal rectangle k# j, K has continuous partial deriva-

tives. Thus Taylor expanding K and retaining only the lowest degree terms

we obtain
S S.
k+1 “j+1
s * p,‘TKP’q (teot)) [ ] tu-£)P(v - £5)Fn(u)h(v)dudv
i O<ptq<2 777 Sk Sj

where in fact the term with n=1=q is of higher order. Using

h(u) = h(tk)+-(u- tk)h’(int. nt.) and (43) we find

A AS?H( Y PO Pl Ul 1A B B LY )
= u- u)du = {- 5 5——H(S, .4 - S
L K 6200, hz(ak) 12 2y e z
h*(t, ) (45)
R B e R
h (tk) =

where sk< rk< Sk+1’ and likewise

p Tkl 2 p hiy) 1 1 1
B = [ lu-y)nluldu = g7 = a )(Sk+1 - Sk);’z * TZRES k1 " Sk 7 -
k k n
(46)
It then follows (usina (41a)) that
h“(t h-(t.
s = -0t (- %)%t::mwj) # KONt n(w,) (- 2’—4);%%
i

1.2,0 ] 1,0,2 1
t oK (tk’tj)rz"h‘(_)tk h{ws) + K5(t, .t 0w, )y h(tj)](skﬂ =S (85497 85)

1
>
n

A
R S %

PRI
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r 3 )
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and thus by the symmetry of K,

IR DI » g{KO’](t,s)h(g h'(s) _ KO’Z(t,s)E{%} dtds
k#j <9 t#s he(s)
b t b 0,1
d K (t,
= L Jatn(e)(f+ as Lr- L sl
a a t
b b 0,1 0,1
s 1 t,b K t,
R Bl R TN L F L S e oS RIGET
a a
1 2 1
= - ﬁIaY’OC - TZ—IAYCh (47)
where A, is defined following Eq. (15).
Finally adding (44) and (47) we obtain
2 . L 2 1
né[1st term] s IZIGY,OC ]z‘fAych. (48)
The second term
We now consider the second term in (14):
Al b b
2nd term = ﬁ'zc(tk)gRYX(tk’v)f(v)dv - f£ RYX(u,v)ch(u)f(u)dv
Skl 5341
= 1 [ ] IM(tv) - M(u,v)Ih(u)h(v)dudy
k. s S
k J
vy .
kg

where M(u,v) = c(u)RYX(u,v)f(v)/h(v) is a generally nonsymmetric function.
The integral Jk K over each diagonal square is split into the six regions
]k to 6k' Over region ]k’ using the Taylor expansion H(tk,v)-rd(u,v)=

-(u -tk)M]’O(xk,v), S <VX <t and the mean value theorem we obtain

.
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f{k - M]’O(ak’bk)h(ak)h(bk){i - (u-t,)dudv

1

= g.M1’O(ak,bk)h(ak)h(bk)(tk- Sk)3

where s, < bk< a <t and thus by (41b) and (42),

h(b,) t, -s
2 ] 1,0 k k “k
nXJ’J.:_M,(asb) = (S
” ]k 24 K k’7k h(ak) SK+1 Sk
b
e 0t ).
a

A similar argument gives

b
S R (TR
k 2k a
2 1 21,0
Y [f 7 - ag M (t-,t)dt,
k 4k a
2 1 1.0
n“y [f 2 15 M (E-,t)dt.
k 5k a

The integrals over regions 3k and 6k are slightly more complex.

3k vwe use the Taylor expansion

Mt av) -M(u,v) = Mt e )+ (v-tk)[MO’](

where tk<:xk,yk U< X4 and applying similarly the mean value theorem we obtain

b
2 1,1,0
0[] a [l g
k 3k a

................

k1~ Sk

0,1
tk,Xk) = M

For region

(usx, )]

(-t M0yt )+ - £ D0 (g x ) - M

(1) + 7500 (2, 00) - 40 (¢ ,2-) b0t
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Likewise

nzg I [0t t) - 00 (6,6-) - M0 V(¢ t4) rat.
k

Finally putting all six pieces together we have for the diagonal terms

(i 0=, 0) - 20, 0)] - o (et - (e e, (49)

Over each nondiagonal rectangle k# j, M has continuous partial derivatives.

Thus Taylor expanding M(tk,v) - M(u,v) into

(-t M0t - o= )00 L) - -t v e (gt )

plus third order terms, and retaining only the lowest degree terms (M]’0 and

MZ’O) we obtain, using (45) and (46),

1.0 Sk+1 5341
=M (tk’tj) [ ] (u-t)n(u)h(v)dudv
Sk SJ-
1,2,0 Pk 2441 2
- M (tt) [ [ (u-t ) h(u)h(v)ducy
J S, S

J

) 2,0 hwy) 1
(Ws) - M (tk,tj)m?b}(skﬂ -5 (554 -sj);z
and thus

ml0(g,s)nftin(s) _ MZ’O(t,s)£{§%4dtds

he(t) (50)

b ,1,0 1,0
= - ——-[M]’O(s-,s)-M]’O(s+,s)]ds -é%g{m h(é?,s)__“ h(gg’s)}h(s)ds

where the last equality is obtained integrating by parts as in (47).
Finally, adding (49) and (50), we find
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n2[2nd term]

=4

b
2]—4 Fim 0o, t) -0+, 1)1 - [0 T(e,t-) - 10 (e, t0)] 00t
a

b ,1,0 1,0
1 Bl 0.ty w0, t)
- . } h(t)dt (51)
22 £ hTb) hia)

_ 1 cf 1
= 25/8vxn - 28 Pvxf

! where Byy and AYX are defined following Eq. (15).
) Now (15) follows from (14), (48) and (51).
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B. Expressions for the constants in (24) and (25).

~

(s

o . . . .

5] Using the method of solving the integral equation (5) described in

e

“ [8, Ch. IIT, Sect. 7] we find

: oza + 2a

N 2_ 4 JXIN T ONX

i ’ XN ova, + oza ’ .
b XX N°N X

g M=o XN ,
" 4
v, XNt O
2. 2,2, 2,2 2
.0 " oxaonaN(cx JN)(ax - aN) .
, 2 (02a +ota )(oza +ola ) S ’ '
A X°X NN XN "N X »
. b
B 2 2 -
. ‘- OXON(aN - ax)q(l -e ) ‘
< i (022 + ola.) ’ i
s oyan * oy S
3 4
where
& S=all- e'o‘)(oxax+o§aN) + (1 +e'°‘)aXaN(oX+oﬁ). :
5]
’ r
A "
LY

u"....o‘..-.. :'..-‘\.- \..\- At A .‘--\‘-.\- DRI -_-“.-.._- ..-.‘ . ,.-._‘: LR ~'..-.‘.-..‘ -...- .\- DR ..:...:-\-‘\q \‘., ..‘ AR U PR Q.\. LSRR - _.q‘
YRR * L N R T T AL P S ML A .

. DA A A A S AT A I S PN RO
e, . CAAORIRIIEY DARCSC TN TN . ~ NN N
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Proof of (30)

With the notation introduced in Appendix A we have (writing R for RY)

b
st tern = b § cltIR(E, - to)c(t;) - [[R(u - v)ch(u)ch(v)dudy

n k,Jj a
Sk+1 Sj+1

v / [R(tk-t].)c(tk)c (tJ.) -R{u-v)c)c(v)ih{u)h{v)dudv
k,Jj Sy Sj -

S O (52)
k,j v

We first concentrate on the diagonal terms Ik K and split each square

(Sk’5k+1)x(sk’sk+1) into its upper and lower triangles. Then

/I [R(O)cz(tk)- R(u - v)c(u)e(v)Ih(u)h(v)dudv
lower
triangle

-

XN

PORRARAL: | XA ARARAAL

e e 0 o 8]

(%) -

= ]ff (R(O){cz(tk)- c(u)e(v)}-R  (0+)u-vclu)elv) + o(Vu-v)c(u)c(v)Ih(u)h(v)dudv
ower 4
triangle

= -R(bg)(0+) [/ Yu-v ch{(u)ch(v)dudv
lower
triangle

= -R(y5)(0+)ch(uk)ch(vk) If Ju-v dudv
lower
triangle

- - AR (0r)eh(uy )en(v, ) (5,47 - 5,) 2

for some (uk,vk) in the lower triangle, where = indicates equality up to higher

order terms. Similarly, the integral over the upper triangle has main term

ARU2) (0-)ch(a, )eh(b, ) (5,4 - 5,) 7
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for some (ak,bk) in the upver triangle. Using (41a) we then obtain

1 2
WPl g BUE 0 - RUR o gt (53)

For the nondiagonal terms k# j, Taylor-expanding R and ¢ we obtain,

writing ¢, for c(tk), Cé for c’(tk), etc.,

A Ac o U3 L LB
Iy = Rt -tydees povepey o5+ oo e+ ooel o0+ o c AR
. A, A B B.
- - R (b - _k__J .o (K - .
: R (tk tj){ckcj( - n) ckcj( AkAj) t ¢ (AkAj > )}
B B
- 1 ke
- R’(tk'tg)ickcj(n > 2AkAj) :
.
b
+ higher order terms, ‘
5 where Ak’Bk are given in (45),(46). A1l terms, except for those retained below r
S have rate n"%, so that the dominant term is :
: ) L Rt -t el Je(t) (2 + )
. I, . =-5 R(t, - t.)c(t, Je(t.)(— +
: K7 k,d 2 K#; k 7j k J'hhn n
v, and by (46) and (41a), .
J N
: RN L TR -t Je(t, ) i + o).
: k#j < 240" k#j J Ton(t,)  h (t;)
The double sum above over all terms with [tk - tJ.| 2 ¢ has rate n'z, in fact )
2 1 ~ h{s hit
: n N PP [f  R™(t- s)c(t)c(s){lé—% + -{—}}dtds "
; ltk-t-lze ksJ 2] [t-s|>e hit his »
. j "
":?If‘-'. e e e T T e e e e e e T s
N I A SRR G e N SRR L e BN AN
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and the limiting constant is finite. On the other hand the same argument

shows that nzz,t _t |<€Ik j tends to the same integral as above but over
k "3 i

|t-s| <e, which is not finite, as integration by parts and R'(0+) = show.

Thus its rate is slower and it becomes the dominant term:

1 . 1 1
Y1, = - —— N R7(t, - t.)c(t, et ) +
kij Ko 24 n* [ty -t ]<e ko T3k hzktk) hz(tj)

for each ¢ > 0.

Differentiating the expression of R in terms of R, and R, we obtain

X N

2 RAODRIDE  R(x)
Ry = B X X KT s R,
B P TS R TR L

Assuming that R;(Ot) and RE(Ot) exist and are finite, it follows from

I 5
1- Ri(r) =0 9X,0
that 5 al/Z

Y . 2K X,0 _ 1
|| /2R (1) T:O e §aY,1/2'

Thus for very small ¢ (e =~ 0),

~ L 1 1
T Ty e
J

Also for € ~ 0 and, say, k>j, we have

t'+1

1
= {. h = h(ti)Ati = h(tj)Ati
1

3| —

for i=j,..., k, and thus summing up

(54a)

(54b)

N

SRR
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ST




Likewise, when j > k,

A ~ .I
R (tk‘tj) - -gaY’l/Z (j_k)3/2 — .

Using also c(tk) =c(tj), h(tk) =h(tj), we obtain that for e~ 0,
2
: LA LAy
71 ¥ - —%r 0 { I+ }.
. k,j 2 Ysl/2
k#j 96 n

) 3
0t "t <e (k-3) 72 th(tj) 0<t-t,<e (j-k) 72 hl/z(tk)

As the sum extends over 0< k-j<nh(tj)e and 0<j-k< nh(tk)e we obtain in

the 1imit, in view of (41a),

00 2 L 2
1 RIS BTN
i 96aY,1/2{m§-| m3/2 fhl/z ¥ mz] m3/2 J'h /2 )

1
= - 250y, y,t(%)fch %, (55)

These arquments for € =~ 0 can be made precise by writing upper and lower

bounds in terms of ¢, and then letting e+ 0 as these hold for all ¢>0.

Combining (53) with (55) gives (30).
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D. Proof of (34) and (35) \
At
We have '
y " W
: (e8] ;
: Rox{T) = ELQ(X(0) Q(X(1))] = s Q(x) Qly) p(x,y; Ry(1)) dx dy “
) where p(x,y;p) is the bivariate normal density with zero means, variances one,
and correlation coefficient p. Thus, by Price's theorem [7], we obtain
9R
- = QX g
= Ry(1) SF p(x.y; Ry(1))dQ(x) daly) -
N :
\ = RX(T)kZJ=2 p(xk’xj;RX(T)) (.Vk - Yk_]) (yJ - yJ']) o
‘s ’ :
-~ ( .‘
RX(T) N 9 xi -
: = L - Yeq) exp [- — ] %
X 2/ - RZX(T) k=2 1+ Ry(1) 3
. 2 2 *
‘ N ( ' - X ¥ xj - 2xkijx(T) -
', + Y-y - V.-y-_ expi-
; gk 05 g 201 - R%(1))
‘ If follows that ]
o " o
() Ry (1) - P.. (0) -
Roy (0%) = Tim O AR P Rox () .
T+0 T 0 ' ;
-
_ Rylo4) N 2 x%/2 X
i L e ye)t ek x
A TT{-ZRX(O“’)} k=2 N
IPTETPPINN A 2 U * vey) /8 :
1 -3 {- /?RX(O+)} ‘ Z (Yk‘yk_]) e o
! k=2 .
E';-:-:-w.:-l-::-a:.s:.v,-.: T N T e I T o N e e, e T e e e AT e

.q‘f

Y h



A V v
= - {-Rg(0+)/m} ZBQ = - {ax,o/(Zﬂ)} qu.

Similarly
R(%) (0-) = {o /("Tr)}l/2 B
QX X,0" " Q
and thus
1 1

= R.2(0-) - Rz (04) = {20, /n} B
“x,172 = Tox VT QX *x,0/™ “Eq-

This establishes (34). For (35), differentiating once the expression

above for RéX(T)’ we obtain
Z

PN RY (1) RX(T)[R)E(T)}2 N ) X
RQX(T) - z—ﬂ—{[]-Ri(T)]VZ + []—R)Z((T)]*j/z—"}{kzz(vk‘Vk_]) exp[- ]_‘.'_R_X—(?.)—]
2,2
X +x7-2x, x.R, (1)
+ (y, -v, 1)y: -y {Jexp[- £ _KIX "7
cageg M SR TR
ST D A

¥ X 5 (¥ =¥, 1) exnl~ 3
;2 k 7k-1 ' ]+RX(T) []+RX(T)]2

:
L
2n[1-RS (1)177 k=

2 ]
N X +XT-2x, xR, (1) po(1) "
; Y i\ o\ e ol 2 )
oy ey Mysmvs Jexol- 7 b il ) xR ()]
kpj=2 K k-1 2(1-Ry (1)) e () K S R 5
and using (54a) we have as 1 » 0,
—xi/Z

3 Qa n
1 R () » B2 | (y, -y, %
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Fig. 2. Plot of asymptotic mse (in dB) vs. number of samples n (n:2-21) for ..:\

No noise case - dash-dot _ _ '«j.:
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Fig. 3. Plots of mean square error for the following schemes

) Uniform sampling, optimal coefficients

) Uniform sampling, adjusted simple coefficients

) Optimal reqular sampling, optimal coefficients

) Ontimal median sampling, adjusted simple coefficients

) Uniform samnling, nonadjusted simple coefficients

) Asymptotic expression for uniform sampling, optimal
coefficients or uniform sampling adjusted simple
coefficients
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Fig. 5. Plot of asymptotic mse vs. number of samples n(n:1-20) where

RN = yRX and curves parameterized by y
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